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Dynamic scaling for avalanches in disordered systems
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Dynamic scaling for fracture or breakdown process in disordered systems is investigated in a two-
dimensional random field Ising model~RFIM!. We find two evolving stages in the avalanche process in the
RFIM. At the short-time regime, a power-law growth of the avalanche sizeDs is observed; and at late times,
the conventional nucleation and growth process is found. At the critical point of the RFIM, the avalanche size
is found to obey the dynamic scaling lawDs;t (d2b/n)/z. From this dynamic scaling relation, the critical
strength of the random fieldDc and the critical exponents,b, n, andz, are determined. The observed dynamics
is explained by a simple nucleation theory of first-order phase transformations.
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I. INTRODUCTION

Study of fracture or breakdown of disordered or hete
geneous systems under external perturbation is of grea
terest due to its direct relevance to many practical proble
@1–3#. It covers a wide range of fields from deformation a
fracture in metallic glasses@4#, Barkhausen jump in ferro
magnets@5#, martensite transformation in shape-memory
loys @6#, earthquakes@7#, and deformation of granular mate
rials @8# to the behavior of index or exchange rates in t
stock market@9#. The fracture or breakdown in these heter
geneous systems occurs when the external control param
approaches its threshold and is usually preceded by pre
sors in the form of avalanches@10#. The underlying corpora-
tive behavior in the avalanches, such as the self-organ
criticality phenomenon, has been investigated extensivel
some of these systems@3,11#. However, most of the works to
date have concentrated on the equilibrium or static sca
behavior @10–13,16–19#; very limited attention has bee
paid to how an avalanche develops. As a result, the dyna
nature of the avalanche or fracture remains unsettled.

Fracture or breakdown is, by nature, a dynamic proce
The time-dependent behavior of the avalanches bears a
nificant bearing on our understanding of deformation a
fracture that depends sensitively on the external loading
tory, as well as the intrinsic disorder embedded in the s
tem. One of such cases that we are interested in, but far
studied, is deformation and fracture in metallic glasses@13#.
Deformation in metallic glasses occurs when the app
stress exceeds the yield or flow stress. Due to the lac
well-defined flow defects, such as dislocations, deforma
in metallic glasses proceeds by the formation of localiz
zones with heavy concentration of plastic shearing ins
@13#. Different-sized shear zones occur during the deform
tion process and eventually evolve into a large, spann
shear band traversing the sample, resulting in fracture of
material. Much like the Barkhausen jump in ferromagn
@5#, the formation and propagation of the local shear zo
lead to the serrated flow manifested in the stress-strain cu
Each rise and fall in the curve corresponds to the propaga
of a shear zone, or an avalanche, which of course dep
sensitivity on the resolution of the instruments. The ex
origin of the formation of the shear band is still not we
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understood. Certain structural and chemical heterogene
present in metallic glasses are suspected to be the cau
shear banding@4,13#. The phenomenology of the deforma
tion process suggests that it is a collective behavior of
local shear zones that lead to the shear banding or frac
either it is a result of coalescence and growth of many lo
deformation avalanches or an abnormal runaway propaga
of one of the deformed zones that leads to the percola
phenomenon. One of the fundamental questions under
ning the deformation and fracture mechanisms is, theref
how these deformation zones initiate in the early stages,
what their dynamic behaviors are in later times.

The dynamic properties, such as initiation and propa
tion of the local events or avalanches, whether it is a lo
magnetic domain@5# or a local shear deformation zone@13#,
are, therefore, of great importance to both theoretical und
standing and practical applications@4–13#. Fracture and de-
formation process have been treated as phase transi
where the free energy difference between deformed or f
tured and undeformed or perfect systems constitutes the d
ing force for the transition@14–16#. The scaling laws were
shown in a mean-field model that treat the fracture or bre
down point as a spinodal point in first-order transition@14#.
However, depending on the specific models used, the sca
is different for different model systems.

Another unsettled issue about the analogy made betw
the phase transitions and fracture is that one of the sa
features of the fracture or breakdown processes, theinstabil-
ity, may be overlooked. Certainly as the system is approa
ing the breakdown point or fracture, it could be well d
scribed by the analogous models of phase transitions.
beyond the point of the yielding or breakdown, the syst
might be driven by the runaway process, or instability, ch
acterized byirreversibility. At and past this point, the char
acteristic time for the thermal fluctuations is shorter than t
of the fracture process. Therefore, thermodynamic desc
tion of the fracture or breakdown process in the form
phase transitions may not be adequate, which includes
the thermally activated and disorder-induced fracture.

This dilemma motivates us to look for other model sy
tems that possess the two essential characteristics for a
ture or breakdown process:local interactions~not necessar-
ily the free energy! and instability. The interaction in the
©2001 The American Physical Society22-1
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GUANG-PING ZHENG AND MO LI PHYSICAL REVIEW E63 036122
random field Ising model is the spin-spin coupling const
J; the heterogeneity or disorder is introduced by the rand
field hi . The fracture or breakdown process is described
the random field Ising model~RFIM! by the formation of
avalanches: when the external applied field increases,
spins in the regions with strong disorder will flip first. Th
flipped spins will further trigger their neighbors to flip as th
local environments of the~unflipped! spins are changed du
to the presence of the flipped spins. This~almost! instabili-
tylike process is termedavalanche.

As is known, the RFIM indeed captures some of the
sence of the fracture process@19#, but its dynamic properties
remain poorly understood. In addition, the scaling expone
are not easy to obtain, especially for those in two dimensi
~2D! @19#. Furthermore, the distinction between the ear
stage nucleation of the avalanches and the propagatio
growth at later times has not been clearly made and use
the equilibrium scaling analysis, although a spinodal ins
bility is predicted for the fracture or breakdown point@14#.
This work will therefore focus primarily on the dynamic b
havior of the avalanche process in the RFIM at zero temp
ture. Moreover, we expect to obtain, using the dynamic s
ing, the equilibrium scaling exponents that are very diffic
to obtain directly from static scaling.

This paper is organized as follows. In the next section,
introduce the RFIM model used in this work and the pro
dure for dynamic scaling. In Sec. III, we describe the d
tailed algorithms employed in this work and present the m
jor results obtained from the simulation. In Sec. IV, w
discuss the results and present a simple theoretical exp
tion for the two-stage evolution in the dynamic process
served in our work. Finally, we conclude this work by a br
summary.

II. DYNAMIC SCALING FOR AVALANCHE
IN THE MODEL SYSTEM

A. The model

In this work, we use a two-dimensional random-fie
Ising model to describe the development of avalanche
disordered systems under an external field. The Hamilton
of this system can be written as

Ĥ52J(̂
i j &

SiSj2(
i

hiSi2H(
i

Si , ~1!

whereSi561 are spin variables and̂ij & denotes the sum
mation extending over all nearest-neighbor spins.J is the
spin-spin coupling constant.H is a homogeneous extern
applied magnetic field,hi is an uncorrelated random fiel
that represents the internal disorder and is chosen fro
Gaussian distribution:̂ hi&50 and ^h(x)h(x8)&52Dd(x
2x8). Both H andD are in units ofJ(.0).

Since the avalanche process is in general much faster
thermal fluctuation, we focus on the system atT50. It has
been found in this case that atH50, the system exhibits a
continuous phase transition atDc below which there is a
ferromagnetic order state@17#. When a sweeping externa
field is applied@18,19#, there exists an infinite avalanche
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the hysteresis loop ifD,Dc ; at D.Dc only finite-size ava-
lanches are found. At the critical random-field strengthD
5Dc , there are avalanches of all sizes that satisfy statist
distributions in the form of power laws.

Dc and corresponding critical exponents have been de
mined atH50 by finding the exact ground states using
maximum-flow, minimum-cut algorithm in graph theory@17#
or by the equilibrium power-law scaling under a sweepi
field @18,19#. However, the values ofDc in these studies are
found to lie in a wide range from 0.54 to 0.75, and t
critical exponents are still not well obtained. It needs to
pointed out that the aforementioned results in tw
dimensional RFIM are all obtained from the equilibrium ca
culation and simulation. To our knowledge, there has b
no dynamic study of avalanches in the RFIM so far.

In this work we report that under an external field, t
nonequilibrium relaxation of metastable states shows a
namic scaling behavior at early times. From these results
are able to determinedDc and the critical exponents usin
dynamic scaling for the avalanche process in 2D. In additi
our results show that this method is more efficient than
equilibrium techniques in obtaining the critical exponents

B. Dynamic scaling

Our prediction of dynamic scaling is based on the fini
size dynamic scaling hypothesis@20#. Near the critical point
(Dc ,Hc) in the phase diagram@21#, the order parameter tha
is defined to be the magnetization jumpm(t)[@M (t)
2Mc(Dc)#/2 satisfies the finite-size scaling relation@19–
21#,

m~L,t !;L2b/nF„L/j~ t !…, ~2!

whereM (t)[^(SSi)/L
d& is the total magnetization,̂& de-

notes average over the random-field configurations,Mc is the
value at critical point, andb/n measures the dimension o
m. L is the lattice size andj(t) is the nonequilibrium spa-
tial correlation length of the flipped spins at timet. F is the
scaling function. During the avalanche process in a fin
size system, we can define the starting timet50 when the
largest avalanche starts and the total number of flipped s
equalss(L,t) during time regime~0, t#. At the beginning of
evolution,j(t) is small compared withL. Therefore, the ava-
lanche sizes(L,t);Ldm(L,t). Together with Eq.~2! we
have

s~L,t !;Ldm

;Ld2b/nF@~Hc2H !Lf/n,~D2Dc!L
1/n;tL2z#,

~3!

wheref/n measures the dimension ofH. z is the dynamic
critical exponent and is defined by the dynamic scaling
pothesist5jzf (kj), wheret is the relaxation time of meta
stable state, andk;2p/L is the wave vector of the system
Near the critical point, this relation gives us the finite-si
scaling for the duration time of avalanche@22#.

^t0&;Lz. ~4a!
2-2
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DYNAMIC SCALING FOR AVALANCHES IN . . . PHYSICAL REVIEW E63 036122
At the critical point, we have from Eq.~3!

^s~ t !&;t @d2b/n#z;tu. ~4b!

This scaling relation is valid at least at the short-time regim
If we take the logarithm on both sides of Eq.~3!, the deriva-
tive with respect tor[(Dc2D)/Dc gives

] ln^s~ t !&
]r U

r 50

;t1/nz ~4c!

at the critical pointr 50 andH5Hc .
Scaling relation~4b! shows that at (Dc ,Hc), the ava-

lanche size increases with a power law in time. Equations~4!
enable us to find the critical value ofDc and critical expo-
nentsb, n, andz by measurements of the dynamic behav
of avalanches along the critical line$(D,Hc)% @21#.

III. SHORT-TIME DYNAMIC SCALING
FOR AVALANCHES

A. Algorithms

We use synchronous dynamics to investigate the kine
of avalanche where all spins$Si% are updated simulta
neously. First the local field$ f j% is calculated,f i5SSj1hi
1H; then the following rules of renewal are applied to ea
spin: ~i! If f i50, the spin-flip probability ofSi is 0.5; ~ii !
otherwise,Si5sgn(fi).

One time step in the simulation is defined as one atte
of all the spin updates. The initial configuration of the syst
is a ferromagnetic state atH50 with all spins up (M51).
The system is then allowed to evolve under a varying ex
nal field described by the following procedures.~i! The time
is set to zero (t50), then the external field is decreased
DH and is kept constant;~ii ! at time t, synchronous dynam
ics is applied and the avalanche sizes(t) is calculated using
the relations(t)5L2@M (0)2M (t)#/2; ~iii ! Step ~ii ! is re-
peated until timet0 when the metastable state is achieve
i.e., none of the spins flip at time stept0 ~t0 is defined as the
duration time!.

Procedures~i!, ~ii !, and~iii ! are carried out until the mag
netization saturates atM521. In a finite-size system the
critical field Hc(L) is defined as the value at which the tot
avalanches(t0) is the largest or the duration timet0 is the
longest. Therefore, the avalanche evolution is recognize
s(t) at Hc(L).

In this work, we used two methods to change the fie
The first is to fix DH at a constant value throughout th
field-sweeping process. The external field is varied as a
function and the driving rate can be measured byDH. The
second approach is to adjustDH to let it be the local field of
the most unstable spin. This corresponds to infinitely sl
driving or quasistatic driving. In this case, only one spin
flipped at the beginning of each avalanche. Therefore,
evolution of the system is deterministic: For a configurat
$hi%, the evolution of avalanches is reproducible.

s(t) is averaged over 100–5000 random-field configu
tions, depending on the system size.Hc(L) defined from
largest avalanche sizes^s(t0)& and the longest duration tim
03612
.

r

s

pt

r-

,

as

.

ep

e

-

^t0& has different values nearDc , but the dynamic scaling
relations@Eqs.~4!# do not change. We give the result ofs(t)
here that is defined as the avalanche process whose dur
time t0 is the longest during a magnetization reversal p
cess. We also measure the avalanche size as the numbe
flipped spins. The same dynamic scaling is found nearDc .

B. Results

Figure 1~a! is the evolution of avalanches atHc(L) in the
short-time regime at different values of the random-fie
strength under an infinitely slow driving field. In a finite-siz
system, the critical random-field strengthDc(L) is defined
such that the avalanche time^t0& has a maximum atDc(L)
@Fig. 1~c!#. It shows that atDc(L), m(t) fits well to the
power law in time, as predicted by Eq.~4b!. This gives us an
efficient way to locateDc(L) by comparing the derivation o
the m(t) curves with that of the power-law fits, as shown
Fig. 1~c!. Figure 1~b! shows the effect of driving rateDH.
Although u decreases with increasingDH, it can be seen
from Fig. 1~c! that the value ofDc(L) determined is not
affected byDH. Both Dc(L) andu are listed in Table I.

Figure 2~a! is the log-log plot of Eq.~4c! under infinitely
slow driving. ^t0& is fitted to Eq.~4a!, as shown in the inset
The exponentsu, n, and z can be determined by fitting to
Eqs. ~4! in a finite-size system, and are extrapolated toL
→`. Table I lists the results from fittingu and nz at L
5512, 1024, and 2048.

The critical random-field strengthDc(`) in an infinite
RFIM can be calculated by the finite-size scaling relation

Dc~L !2Dc~`!;L21/n. ~5!

The result isDc(`)50.6560.03 as shown in Fig. 2~b!. Once
we have determinedDc(`), we are able to confirm the
finite-size scaling relation~3!. Figure 3 shows atDc(`), the
scaling ofm(t) between a pair of lattices. The exponentsb/n
andz can be calculated and averaged to compare with th
determined by Eqs.~4a!–~4c!. Table I lists all the results.

The exponents andDc determined from dynamic scalin
of the avalanche agree with those calculated from gro
state finding in 2D RFIM without magnetic field@17# and
other methods@18,19#. It is found that finite-size scaling ha
significant effect on the avalanche in RFIM@19#. In this
work, however, we did not find the strong finite-size effe
on the dynamic scaling behavior of the avalanche proces
short time. This can be easily understood by the fact that
dynamic scaling is at the short-time regime of avalanc
evolution. At this stage, the avalanche is still small compa
with the system size.

One of the consequences of the early stage dynamic
that the exponents calculated from Eqs.~4! have less statis-
tical error than those in equilibrium simulation studies. Th
suggests to us that in low dimensions, this method may se
as a very efficient and reliable alternative to study the criti
phenomena in RFIM. In Table II we compare the expone
in two-dimensional RFIM determined by different method
2-3
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GUANG-PING ZHENG AND MO LI PHYSICAL REVIEW E63 036122
IV. DISCUSSION

To explain the short-time scaling behavior during t
breakdown process in disordered systems, we first show
Fig. 4 the fitting ofm(t), which is equivalent to the transi
tion fraction f in a first-order phase transformation~FOPT!,

FIG. 1. The log-log plot of the evolution of avalanches at ea
stage for the RFIM atL51024. ~a! Quasistatic driving and~b!
DH50.01.~c! is the square derivationd from power-law fits~solid
line! and the avalanche timêt0& ~dash line!. The minimumd leads
to Dc(L), which is consistent with that determined by the ma
mum avalanche time.
03612
in

to the classical Kolmogorov-Johnson-Mehl-Avrami~KJMA!
equation@23#

f 512exp~btn!, ~6!

whereb is a constant that depends on the nucleation raten
52 at the beginning of FOPT if all nuclei are distribute

TABLE I. The exponents andDc determined from dynamic
scaling relations~4! and finite-size scaling relation~3!. Unless
specified, the exponents are determined from critical dynamic s
ing for avalanche under quasistatic driving.

L
Dc(L)

(DH50.01) Dc(L)
u

(DH50.01) u z b/n 1/nz

256 1.02 1.05
512 0.870 0.870 1.60 1.30 0.13

1024 0.750 0.755 1.17 1.56 1.27 0.12 0.7
2048 0.705 0.710 1.20 1.52 1.27 0.10 0.7

FIG. 2. ~a! Determination of exponentsz and vz by short-time
scaling atDc(L). The dots represent the results calculated from
curve ln(m);t at D50.73, 0.74, and 0.75, and are extrapolated
r 50 with L51024. The squares represent those atD50.69 and
0.70 withL52048. The inset shows the duration time of avalanc
at Dc(L). The plots are in log-log scale.~b! Relation between
Dc(L) and L21/n. The results of linear fits areDc(`)50.65
60.03 andn51.060.1.
2-4
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DYNAMIC SCALING FOR AVALANCHES IN . . . PHYSICAL REVIEW E63 036122
randomly. Figure 4 plots ln@2ln(12m)# vs ln(t) in Eq. ~6!. It
shows clearly that there aretwo stagesin the evolution of
avalanches: In the short-time regime,n is much smaller than
2, while at the late stage,n'2.2560.03, which is consisten
with the KJMA theory~wheren is between 2 and 3 in 2D!.
Therefore, the late stage breakdown process in RFIM is
growth or coalescence process of small avalanches rand
distributed over the system. The short-time evolution of
avalanches is unique for the disorder media.~Note that the
KJMA equation is satisfied by the field-driven FOPT in
pure Ising model@24#.! Furthermore, the driving rate of th
external field seems to affect the evolution in short tim
while at a latetime it is irrelevant.

Our explanation for this two-stage dynamic process is t
at the short-time regime, the evolution of the avalanche
haves like a diffusion process. The local random fields ac
Brownian forces to the roughening surfaces of the a
lanches. Note that the spreading of the avalanche is an
tropic. At the short times the avalanche size grows ass(t)
;w(t)z, where w(t) is the width of avalanche andw(t)
;t1/2 for a random growth process@25#. z is the average
transverse extent of the flipped spin domain and it may g

FIG. 3. Determination of exponentsz and b/n by finite size
scaling atDc(`)50.65. The system is under quasistatic drivin
The symbols are the rescaled data by factors 2b/n to m and 2z to t,
respectively. The scaling exponents determined by a pair of latt
are listed in Table I.
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asz;t1/z. Therefore we haves(t);tu at the early stage and
u is smaller than 2 in two-dimensional RFIM. BecauseDH
affects the distribution of small flipped spin domains at t
beginning of avalanche@26#, u is affected by the driving rate
of the external field.

The existence of the early stage dynamics process in
fracture or breakdown process in the RFIM appears to s
port the analogy made between fracture and the spino
nucleation for a first-order phase transition@14#. The unique
dynamic scaling behavior in the short-time regime sugge
that fractures or avalanches are nucleation processes
trolled largely by a ‘‘diffusionlike’’ mechanism. This regime
is distinct from the later stages where the confirmation of
dynamic behavior with the KJMA model unambiguous
points to the growth or propagation of the avalanches.

For the short-time dynamic scaling, we focused primar
on the largest avalanche. Since this avalanche size is us
defined as an order parameter in the nonequilibrium RF
@18,19,21#, the critical exponents determined by our dynam
scaling can be compared with those obtained by the st
critical scaling@18,19#. It is remarkable to see that this shor
time power-law scalings(t);tu is universal for any ava-

es

FIG. 4. The log-log plot of2 ln(12m) vs t. m is the transition
fraction. Solid lines:L5256, 516, 1024, and 2048~from above!
under quasistatic driving atD5Dc(`). Dotted line:DH50.01,L
52048. The dashed lines are plots of Eq.~6! with the slope equal to
n.
mic
TABLE II. Dc(`) and critical exponents determined by different methods. A is from our dyna
scaling; B1 and B2 are from equilibrium critical scaling; C is from ground state finding.

Dc(`) z b 1/n
u or ~a!

(d2b/n)/z

A 0.6560.03 1.2760.03 0.1060.04 1.060.1 1.5060.02
B1b 0.7560.03 1.360.2 0.260.2 0.6360.04 1.460.2
B2a 0.54 or 0 0.1360.13 1.5660.05
Cc 0.6460.08 20.03860.0009 0.5060.02

aReference@19# z in 2D was not measured but (d2b/n)/z was conjectured to be equal to 1/syz andsyz
50.6460.02.
bReference@18#.
cReference@17#.
2-5
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GUANG-PING ZHENG AND MO LI PHYSICAL REVIEW E63 036122
lanche, i.e.,u is the same for avalanches in all sizes. Th
issue will be further discussed elsewhere@27#.

V. SUMMARY

We studied dynamic scaling for the avalanche proces
RFIM using numerical simulations. We found that the d
namics has two stages. In the short-time regime, diffus
growth or nucleation of the avalanche is found; at a la
stage, the dynamics is consistent with the KJMA grow
mechanism. Particular attention is paid to the early stag
the breakdown process. In the short-time regime, the a
lanche size is found to obey the dynamic power-law sca
s(t);t (d2b/n)/z. This power-law evolution turns into the dy
namic behavior described by the KJMA equation in la
times. In the thermodynamic limit, the crossover timet from
the power-law regime to the KJMA regime is expected
diverge as the strength of the random field approaches
ys

ys

cs
lf

d
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critical valueDc . These results support the proposition th
the disorder-driven system at zero temperature should
have like the homogeneous system driven by thermal per
bation close to a spinodal point.

Using the short-time dynamic scaling near the critic
point, we are able to determine the critical strength of ra
dom fieldDc and related critical exponents,b, n, andz in the
two-dimensional RFIM that have been found very difficult
obtain using static scaling. Our work, although numerical
nature, suggests an efficient way of obtaining the equilibri
scaling exponents for disordered systems.
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